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Introduction 

In the interpolation of seismic data two different cases 
have to be considered, namely when 

• the data are spatially aliased, 

• the data are not spatially aliased. 

A 
Optimum 1 D interpolation operators 

The most important basic process with respect to these 
operators is 1 D interpolation of a given regularly sampled 
dataset to form another one with a smaller, larger or equal 
sampling interval. For the last mentioned only a time shift 
has to be applied to the dataset, whereby the time shift 
may be just a fraction of the sampling interval. 

To meet the requirements of bandwidth preservation the 
operator design routine should include: 

• An operator transition frequency band of variable width; 
for every width specified by the user a set of near-opti­
mum operators should be generated. 

• A number of different (fractional) shifts of the sampling 
intervaL Thus, the design routine must supply aseries 
of operators, which should generally be calculated in 
advance, stored in memory and used on request (table­
driven interpolation). 

• Operators with very uniform error behaviour or sm all 
overall error together with considerable bandwidth to 
avoid modulation effects. 

• An additional anti-aliasing filter in the interpolation 
operators in order to improve the efficiency of the pro­
cess. This filter is sometimes necessary when regrid­
ding involves increasing sampling interval. 

There are three possibilities for dealing with the interpola­
tion problem: 

a) Polynomial interpolation 

This type of interpolation is usually implemented by convo­
lution with simple operators derived from a cubic, quad­
ratic or even linear interpolation formula. These operators 
are extremely short, nevertheless their amplitude and 
phase spectra render them quite unsuitable for all applica­
tions where broadband operation is critical. In the case of 
static corrections, in which the delay from interpolation 
usually varies randomly from trace to trace, it may be par­
ticularly disturbing to realize that the spectral response 
of these operators is highly dependent on the delay. 

b) Truncated sinc-interpolation 

From the theoretical point of view the infinitely long sinc­
operator is an appropriate operator for solving the interpo­
lation problem. A finite impulse response of this operator is 
obtained by truncating it. However, in general it is not a 

The first case is described in PRAKLA-SEISMOS Informa­
tion No 61 "Interpolation and Coherency Filtering, Two Ap­
plications of Seismic Pattern Recognition". The brochure 
you are now reading is concerned solely with the latter 
case, which involves preserving especially high frequency 
seismic information. 

very useful operator for interpolating discrete data. This 
can be seen in Figs 1 and 2, which show that the resulting 
frequency response of the truncated operator has con­
siderable overshoot and undershoot as weil as a slowly 
decaying ripple. 

c) Smooth band-limited interpolation (GRDPOL) 

This new technique relies on a smoothed approximation 
of the operator in an extended spectral domain with sub­
sequent transformation to the temporal domain and trun­
cation at the intended length. Two methods have been 
developed for different purposes: 

First method: This applies a soft flank to taper off the 
amplitude response smoothly from one to zero at the end 
of the usable band. This method of tapering is weil suited 
to fulfil the anti-alias filter requirement; the operators are 
not pure interpolators, but are of mixed type with a weil 
developed broad stopband and passband in which their 
phase response is determined by the interpolator charac­
teristic. 

Second method: The real part of the spectrum of any in­
terpolation operator has a continuous transition over the 
Nyquist limit while the imaginary part changes its sign. This 
method tapers off the imaginary part only with the flank of 
the modified spectrum having a smooth continuation over 
the Nyquist limit. 

Fig 3 shows the amplitude response of smooth interpola­
tors designed by this new technique for a nominal delay of 
0.5 sampies with 12 and 48 filter points. To allow a direct 
comparison the scale is the same as that in Fig 1, in which 
the response of the truncated sinc-operators is displayed. 
Fig 4 shows the effective delay for 13 and 49 point opera­
tors with a nominal shift of 0.25 sampies (compare with 
Fig 2). 



Fig 5 demonstrates the flexibility and precision of the pro­
gram by displaying the amplitude responses of 0.5 sam pie 
delay operators designed by the routine for 12, 24, 48, 96 
filter points on a much finer scale. Obviously, these opera­
tors do not exhibit equi-ripple behaviour; the best possible 
tradeoft between steepness of the transition flank and 
flatness of the passband roof can be reached byallowing 
an overshoot maximum of about 1 % followed by a rapid 
flattening of the roof. It can be seen that these specifica-

tions are closely followed by all operators: the roof is vir­
tually flat prior to an overshoot maximum of weil below 
1.2%. 
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Fig 1: Amplitude spectra oj sinc-interpolators 
(0.5 sampies nominal). Truncation: 12 and 50 
points. Phase error is zero. 
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Fig 2: Effective time shift vs jrequency jor 
sinc-interpolators 
(0.25 sampies nominal). 

Fig 6 shows the combined interpolation/highcut operators 
designed by the first method. All displayed operators have 
their 50 % amplitude point at half the Nyquist frequency 
and a nominal shift of 0.5 sampies. The amplitude spectra 
of a 24 and a 96 point operator are shown. 

Smooth Interpolator 
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Fig 3: Amplitude spectrum oj smooth inter­
polators (0.5 sampies nominal). 
Compare with Fig 1. 

Smooth Interpolator 
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Fig 4: Effective time shift vs jrequency jor 
smooth interpo!ators 
(0.25 sampies nominal). 
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Fig 5: Amplitude error spectra oj smooth 0.5 
sampie interpolators. 
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Fig 6: Amplitude spectra oj combined interpo­
lation/highcut operators. Shift is 0.5 sampies 
and nominal 50 % cu toff point is at 0.5 FN. 



B 
Interpolation of a 2 D dataset 

20 interpolation with 1 0 optimized smooth interpolation 
can be simply performed in a horizontal direction of a 20 
dataset. The data may be interpolated to a denser or less 
dense grid, including anti-alias filtering, or to a shifted grid 
with equal intervals. 20 interpolation is a special case of 
3D interpolation, which is considered below in detail. 

c 
Interpolation of a 3 D dataset (non-aliased) 

In 3D seismic work there is Often the problem of transform­
ing a set of 3D data from one coordinate system to 
another. For example such a transformation is necessary 
to merge two overlapping 3D survey areas with different 
acquisition geometries so as to obtain a uniform post­
stack geometry for subsequent 3D migration or computer­
aided interpretation. Assuming that both survey areas lie 
on regular grids, the required transformation needed is 
composed of translation, dilation and rotation of the basic 
grid Gell. 

The problem is illustrated in Fig 7. Here.the original 3D grid 
has to be transformed into another grid, which has been 
rotated and which shows different spatial sampling inter­
vals compared to those in the original coordinate system. 

Fig 7: Seismic data have to be transformed 
from the original (darker) coordinate system 
to the new rotated grid to enable data with 
different acquisition geometries to be merged. 
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Fig 8: Interpolation step 1: Obtain new y-dis­
tance as the projection of the output y-vector 
on the input y-vector (an inline dilation). 
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Fig 9: Interpolation step 2: Move to the inter­
sections of the input x-lines with the output 
y-lines (an inline translation/dilation). 

Fig 10: Interpolation step 3: A final shearing 
(inline translation) generates the output grid. 
The procedure is exact if all data are well­
sampled on input and output grid. 



Approximation to the 2 D sinc-operator 

Assuming the input and output grid fulfil the requirements 
of the 2 D sampling theorem, complete restoration of the 
data can be achieved in the new grid by a two-dimen­
sional filter which represents a generalization of the well­
known one-dimensional sinc-type interpolator. This 20 
operator could be applied to data of equal traveltime, in 
other words to time-slice data. As the points of the target 
grid usually appear to be quite irregular compared to the 
input grid, the 2 D filter coefficients have to be computed 
afresh for every output trace to be generated. Conse­
quently, this 20 interpolation is not an easy task for any 
existing computer system. 

y 
Fig 11: 

Part of time slice: 
Original data. 

y 

Fig 12: 
Part oftime slice: 
Interpolated data. 

The 2 D operator can, however, be separated into a pro­
duct of two one-dimensional operators; the cell translation 
and the dilation can be split up into regridding in the 
x-direction followed by a regridd ing in the y-direction, 
which is very similar to two-pass 3D migration. It can be 
shown for cell rotation that this transformation is repre­
sented by a shearing in the x-direction followed by a 
90-degree rotation and then bya shearing in the y-direction. 

This type of interpolator is installed in the PRAKLA-SEISMOS 
GEOSYS system. Runtime observations have shown that a 
data volume of 400000 traces can be processed on a 
vector computer system in mere hours (wall-clock time). 

X' 



The sequential application of 1 0 operators is explained in 
Fig 8 to Fig 10. In Fig 8 the original grid in y is regridded in 
the y-direction (eg from A, B, C, 0, to P\, BI, CI, 0 1

), then in 
a second step linear interpolation is performed in the 
x-direction (eg S, Q, Rare interpolated). Finally in step three 
the grid points U and V are interpolated in the new i-direc­
tion to construct the grid points of the new cell E, S, U, V. 

In the following example the run comprised some 500000 
traces. Fig 11 shows part of a time slice of the input data; 
Fig 12 depicts the same part after an affined grid transfor­
mation. Both figures refer to the x-y orientation of the re­
spective grids and therefore the second figure is rotated. 
The transformation comprised rotation of about 18 de­
grees, alteration of the coordinate origin and a change of 
the trace interval from 25 m to 20 m. Upon closer inspec-
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Fig 14: 
y -line 01 interpolated data corresponding 

to the "diagonal sorting" 01 the input . 
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tion it is recognized that all details are weil restored (some 
small visual discrepancies are caused by the asymmetry 
of the time-slice display in seismic mode). 

This result is confirmed by looking at the sections in Figs 
13 and 14. Fig 13 was produced by picking a y-line of the 
target geometry and sorting all traces of the input data 
next to this line into one section. This diagonally sorted 
section can therefore be interpreted as the resu lt of "next 
neighbour" or stepwise constant interpolation (without 
changing trace interval). As is to be expected, this section 
looks somewhat noisy and incoherent. Fig 14 shows the 
same section taken from the output of the grid transforma­
tion. It is clearly seen that the resolution of fine details is 
enhanced, while at the sarne time the signal to noise ratio 
and the coherency are significantly improved. 
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