### PRAKLA-SEISMOS INFORMATION No.19

# PRAKLA-SEISMOS

## **3-D** Seismics



Since 1975 PRAKLA-SEISMOS has provided their clients with the new seismic technology generally known as 3-D seismics. In an earlier publication PRAKLA-SEISMOS Information No. 3 this technique was introduced as "Areal Reflection Seismics". The term "3-D Seismics" has since entered the international scene. This title has now been adopted in order to avoid possible misunderstandings.

Seismic information based on conventional line surverys – or 2-D techniques – remain inadequate and unsatisfactory in many cases, in particular when complex structures have to be revealed.

3-D techniques lead, in principle, to two types of result:

- 1. Plane sections in arbitrary spatial direction after application of 3-D migration. Superior signal-to-noise ratio and strength of multiple attenuation are the most significant properties of 3-D migrated sections.
- Large series of stacked parallel echelon-profiles in any desired orientation imply a high degree of realibility to interpretation.

A broad spectrum of 3-D field techniques has been developed and successfully carried out in practice, 3-D data processing techniques advancing parallel to these developments. The four examples for 3-D seismics in this brochure show how 3-D technology can be adapted to different prospective targets and survey conditions. Onshore and offshore objectives so vastly different as

- deep targets
- shallow layers with high-resolution
- steep dips and and complex faulting

can be surveyed using different energy sources such as

- explosives
- vibrators
- hydraulic hammers
- airguns.

Environmental and access problems are overcome by highly flexible survey concepts.

Economic application of 3-D technology is best provided by multichannel recording instruments (up to 240 channels) and by emitterintensive means such as vibrators and "lanced" shallow shotholes.

The 3-D technology has been applied for practically all kinds of prospecting: coal, salt, hydrocarbons, thermal springs, and for the solution of engineering problems.

This unique process unravels complex three-dimensional structures by plane vertical sections. The tremendous quantity of data involved provides a considerably enhanced signal/noise ratio – a welcome secondary effect.

The upper picture is a stacked section from a low coverage 3-D survey for coal-mine exploration. The parameters of this specific survey were adapted to preserve the maximum of the high-frequency information by employing a narrow CDP grid with 12.5 m spacing (arrangement see figure 4, page 5). The seemingly poor data was converted into a highquality section by the powerful 3-D migration process as shown in the lower picture.



3

#### **Objective: Sequences of Echelon-Profiles**



#### Fig. 3

The series shown is a sequence taken from 88 sections of a 3-D survey for coal-mine prospecting covering an area of  $4 \times 4$  km. Faults can easily be traced by the interpreter. Coverage of the survey was 6-fold, CDP gridding 50 m.

**Fig. 4: Building-Block System for areas without access problems.** The area to be surveyed is regularly covered by receiver and emitter stations. The system shown here is based on 50 m geophone-station spacing and 125 m shotpoint spacing along distinct shot rows. The mean coverage achieved is 2-fold, the grid spacing 12.5 m (for results see figures 1 and 2 on page 3).



**Fig. 5: Frame-Work System, applicable where acess to the survey area is restricted to roads and paths.** Receiver and emitter stations are separately arranged on lines which are more or less perpendicular to each other. Coverage in the scheme shown is singlefold. A specific application of this concept is demonstrated in figure 19 (page 11).



The survey arrangement corresponds to the scheme in figure 4 (page 5) and on the cover sheet. The data quality was primarily superior to that shown in figure 1 (page 3). 3-D Finite Difference migration (in the past simply called Wave Equation migration) was applied to all of the 2-fold stacked data points. On this page three stacked sections are shown and the corresponding 3-D (finite difference) migrated vertical sections (figure 7 and figure 8).

The upper right figure 6 shows the lay-out of the geophone pattern applied (3-arm windmill, 18 geophones) and response curves showing the omnidirectional reject power of about  $-12 \, \text{dB}$ .



Fig. 6: Layout of the Geophone Pattern



Fig. 7: Stacked Sections

Fig. 8: Migrated Sections

The displays below are a selection of a few horizontal "time-slices" at 20ms intervals taken from a larger series. These useful aids to accurate fault interpretation are a by-product of the 3-D Finite Difference migration technique.



Fig. 9: Time-slices

**Example 2: High-Resolution Prospecting** 



On these pages stages of a high-resolution survey are shown, the target being in the time range of 0.2 to 0.3 s. **The problem to be solved: detection of small faults with throws of only a few metres.** Particular survey parameters were: 5-fold coverage, 1 ms sampling rate using a 60-channel telemetry instrument, bunched 20Hz geophones, 100g single-hole charges in 2m holes sunk with lances. Maximum shot-receiver distance was 255m, the regular CDP grid spacing was 15m. The survey area was subdivided into parallel strips of 180m width. The deconvolved version of a fieldrecord trace shows the resolving power to be expected from this type of survey.





The portion of a stacked section (figure 14) which includes 3-D residual statics does not show obvious faulting in the shallow range. Intensive faulting is obvious, however, in the time range below 0.8s (Carboniferous layers), made evident and interpretable in the 3-D (Kirchhoff) migrated section (figure 15).

Post-Carboniferous dragging can be traced back in the overburden layers until about 0.4 s, as becomes evident from the 5x exaggerated version of the whole section (figure 16). The high-frequency content of this signals in the upper range (down to 0.4 s) is from 150 to 200 Hz.



Fig. 15: Migrated Section

The concept of the "Ladder-System" used here belongs to the Frame-Work category. It is well suited to the application of VIBROSEIS\*: vibrators move anlong accessible roads and paths with moderate indines which correspond to the uprights of a ladder. Receivers are planted along more or less straight "rungs" in the rougher off-road terrain.

An area of  $17 \text{ km}^2$  was surveyed with 4-fold coverage within two weeks. Target depth was in the order of 4000 m (~1.7 s). Receiver-group spacing was 80 m, vibrator-station spacing 100 m.

\* Trade mark of Continental Oil Company



Fig. 17: Relief of geophone line L4





Fig.19: The eight stacked-section portions running E-W (1.4 to 2.4s) show two distinct horizons with clear fault evidence. Each stacked trace of these sections is a composition of about 36 data points which establish a large "quasi-CDP family", and cover a subsurface area of 120m x 150m (see rectangle in the Scattergram).



2.4s

Special 3-D survey system as a reply to an unusally challenge (figure 20).

A 6-km section of the meandering River Rhine was covered by an areal survey within one week. The mean degree of coverage was 8-fold. Comprehensive knowledge of the subsurface structure was thus obtained in a former "white zone" in seismic mapping.

The field technique applied: Airgun pops fired at 25 m intervals from a ferry along traverses across the river were recorded by two 48-channel recording instruments, one on each river bank. Four parallel geophone lines in 200 m intervals and with 12 stations each on both river banks were recorded from each SP-traverse, the traverse interval being 100m. The total number of lines produced was 113, each being 1km in length, the area convered thus being  $5.75 \text{ km}^2$ .

Stacking was done in the direction of the geophone lines. The sections shown are the result of re-arrangement parallel to the river (see red lines in the map) and of subsequent 3-D (Kirchhoff) migration (figure 21).

Fig. 21: Migrated Sections





PRAKLA-SEISMOS GMBH · HAARSTRASSE 5 · P.O.B. 4767 · D-3000 HANNOVER 1 PHONE: 8 07 21 · TELEX: 9 22 847 · CABLE: PRAKLA · GERMANY

© Copyright PRAKLA-SEISMOS GMBH, Hannover