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1. INTRODUCTION

The invitation to write for this volume caused me to re-read the article I published
together with Th. Krey nearly twenty-five years ago (Krey and Helbig 1956). The
article essentially consisted of:

(1) an inequality concerning curvature, that states that, for anisotropy caused by
layering with isotropic constituents, the curvature of the quasi-longitudinal wave
front in the vicinity of the axis of symmetry is at least equal to the curvature of
the ellipsoid with the same axes;

(i1) the principal theorem, that states that — provided the ratio v /v, is the same for
all layers — in the vicinity of the axis of symmetry the wave front of compressional
waves deviates from a co-centric sphere only by terms of fourth and higher order;
and

(1ii) a computation of corrections for greater dips, which dealt with the position and
orientation of reflecting elements (this was my contribution to the paper).

In the present paper I call a medium that satisfies (ii) a K-medium.

Today one could say that the inequality is more significant than the theorem,
because the ratio of transverse to longitudinal velocities is no longer assumed, but
measured in wells, and it does not appear to be constant to the expected degree.
Moreover, there is a certain reluctance to abandon elliptical wave fronts for simple
calculations. This might be due to some degree to the phrase “at least equal’ in the
inequality. It seems, therefore, important to strengthen the inequality. The expressions
in the last section, on the other hand, dealt with the positioning of reflection elements
only. A few years after the article was published, the determination of stacking veloci-
ties from reflection data became the standard of the industry. The calculation of arrival
times is implicit in the expressions but somewhat inconvenient to carry out. Therefore,
a re-formulation of these expressions — preferably in terms of a parameter more
practical than Poisson’s ratio — seemes to be indicated.

A further reason to look at the matter again is because horizontally polarized shear
waves have come into use in recent years. The full potential of reflection seismics
using shear waves lies in the combination with reflections of longitudinal waves. To
this end the velocities of both wave types in the vertical direction are necessary. For
the longitudinal waves, ordinary velocity determination — for instance from the slope
of the regression line through the t*-versus x* data-works, by virtue of the theorem,
even if layering causes the material to be anisotropic, provided the velocity ratio (or
Poisson’s ratio) does not fluctuate too much. However, horizontally polarized shear
waves have an elliptical wave front, and for such a wave front the slope of the
regression line corresponds to the horizontal velocity (e.g., see Levin 1978 and Helbig
1979).
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2. AN INEQUALITY CONCERNING THE CURVATURE OF WAVE FRONTS

The radius of curvature of the quasi-longitudinal wave front in the vicinity of the
axis of symmetry of any transversely isotropic medium is

(C13+C4a)

C33—C . .
Tp=Ty - 33 %% where § is the density (1)
p=Tg Cas

3

and rg =t -]/(c33/9) is the radius for the K-Medium, i.e., for constant 0=(v,/v)>.
According to the theorem the radius of curvature of the quasi-longitudinal wave
front for a K-medium is equal to that of the concentric sphere. For the ellipsoid with

the axes t - |/(c33/8) and t - |/(c,,/d) we have

Tg/Tx =C1y/C33 (2)
and thus
g Tp (Cy3+Cqa)’
———=|(Cyy —Cqq) ————— |/ C33. 3
e Tx |:( 11 44) a3 —Caa :|/ 33 (3)

The curvature inequality is shown to hold if it can be shown that the term in
brackets is positive semi-definite, or if the “fundamental inequality” (Berryman 1979)

(C“ _C44) £ (C33 -C44) g(cl3 +C44)2 (4)

holds. In 1956 this inequality was known to hold for stratified media with two distinct
constituents (Postma 1955). However, in 1962 it was shown that there are stratified
media that cannot be modeled with just two constituents (Backus 1962), thus some
doubt was cast on the general validity of the fundamental inequality. Meanwhile, two
independent proofs have been published (Berryman 1979, 1980, Helbig 1979) showing
that (4) is valid for any number of stable isotropic layers. Stability is guaranteed if
0<0<3/4).

Berryman’s proof contains the key to a generalization and strengthening of the
fundamental inequality.

2.1BOUNDS FOR (Cy; —Cgyg) - (€33 —Caq) —(C13+Caa)* =X -4 C33-Cyy

To obtain bounds for any anisotropy parameter, one starts with the bounds on the
five elastic parameters describing the transversely isotropic medium. These bounds
have to be traced back to the bounds on the elastic parameters of the constituents.
While, in principle, any set of five (independent) parameters for the transversely iso-
tropic medium and any two (independent) parameters for the isotropic constituents
would do, the simplicity of the proof depends crucially on this choise. “Conversion
rules” serve to convert the chosen set of parameters to the common set.
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Since we are interested in dimensionless ratios only, we can use arbitrarily normalized
parameters, thus reducing the number for the transversely isotropic medium to four.
The set we use is based on those introduced by Backus (1963):

=(z(r2)) Yo

Cya

2
(= (e

Equations (5) do double duty as the “mixing rules” and as conversion rules. If
used as mixing rules — i.e., for the calculation of the parameters A, 1, p, ¢ of the
compound medium from those of the constituents — the angled brackets have to be
read as

(5)

o]
7N
[¢]
[=))
(o))
b

{a) =2 pia; with 3p;=1,

in other words, as the weighted average of the argument. If used as conversion rules,
the angled brackets are read as ordinary parentheses, €.g., A =C44/Cgq. As mixing
rules, the equations (1) could be applied even to anisotropic constituents. If the
constituents are isotropic, we have

(1_C13/C33)/2=Ba C44=C66=u’
1/c33=0/p, and (C%3/C33_C11)/4+C66=9-p. 6)
From (5) and (6) we have
1
2Pi%; 2Pl 2Pi/K; (7)
0.
Zpa—f
——p'=p, and
z&
Ky
2 pifin; -
2Pk
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It is obvious that p, o, and 1 are weighted averages of the 8, and thus are constrained
to the open interval (8,, 0,), where 6, and 0, are the lowest and highest value for the
constituents, respectively. The trivial case of a single constituent is excluded, and the
interval (6, 0)) is defined as open. Thus we have

6,=6=6,,
6,<p<6,
0,<o<6,, and
0,<1<6,.

(8)
Further constraints are obtained with the help of the Cauchy-Schwartz inequality

(Cp)*=(Ip;n) (z %) )

from which we have immediately

A1

The equality sign prevails for p;=p, in which case we have from (7) also p=oc=r,
i.e., the compound medium is isotropic. We exclude this case also and use henceforth
A<1.

The Cauchy-Schwartz inequality can be re-written as (see Berryman 1980)

>pip; (B—0;) R —6)
2 Pik; 2R/ K;

(Zpi(B_ei))2< 2 Pil 2P/ (10)

Inequality (10) holds for any constant B that does not cause a change of sign in
any argument (except a change of sign in al// arguments), i.e., for

B<0,or 0,<P. (11)

Substitution of (11) into (10) yields

% (0,,—p) (8, ,—0)>(0, ,—1)*, where 0, , means “6, or 6,”. (12)
The two inequalities (12) are ‘strong’ inequalities since we have excluded the case

of constant . On the other hand, the difference between the two sides of the inequali-

ties can be made arbitrarily small for any A by choosing suitable (positive) p >0 and

suitable 0, from the open interval (6,, 8,) (see Backus 1963).

If we express (4) with the help of (5) in terms of A, p, and 1, we obtain

(Cy1—Caq) (C33—Ca4) —(C13+C44)2 =4C,4C33 [%(1 —p)(1—0)—(1 —T)2:|>0- (13)
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The inequality holds because the term in the square brackets is positive definite. This
is easily seen from (12) if one replaces 0, by 1(>0,). The inequality in (13) is also
a strong inequality, but it differs essentially from the inequalities (12): for a A differing
distinctly from 1 the term in the square bracket cannot be made arbitrarily small
— since 0, < 3/4< 1 — in other words, there must be a lower bound different from 0.
The equation

X2 =[11—Caa) (€20 Caa) = (€134 Caa)]/(4Ca30s) = (1=p) - (1~ 0) — (1 —1)?
(14)

defines a set of parabolic hyperboloids in the Cartesian p — o — t-space. Lines of equal
X? in the planes t =1, are hyperbolae (where 1, is an arbitrary but fixed value of 1)
with asymptotes p=1and 6= 1. In the quadrant p<1, o<1 the set-parameter X?
increases with increasing distance from the asymptotes.

The region of permitted triplets o, p, T is the open set bounded by

2 (8,—p) (8,— 0) = (6, 1)’ (15)

% (6,—p) (8,— 0)=(8,—1)*

1=0,, and 1=0,

For a given 1, the region is a lozenge-shaped area bounded by two ‘constraint-
hyperbolae’ with asymptotes p=0,, c=0,and p=0,, o =0,, respectively. The lowest
and highest permitted values of X? correspond to those hyperbolae of the set (14)
whose apex coincides with the apex of the constraint hyperbolae (15), i.e., for

pa,l=0a,lzel_l/i(el_‘tl) and
(16)

Pa,p =005 ="0y— 1/7_\ (0,—1,) respectively.

Substitution of p, , and o, , from (16,2) into (14) gives the lowest permitted value
of X* for t=1,, and similarly, we get for p_ , the highest permitted value of X? for
t1=1,. The absolutely lowest value of X* is obtained for the highest permitted t
(and similarly for the absolutely highest permitted value of X?). Thus we obtain
bounds for X? by combining (16,2), (15,3), and (14) (or (16,1), (15.4), and (14)) for
given 0, 6,, and A:

1’_9h
A

(1= 8, +2]/% (8, —8) —A(1+6,—20) < x2<1‘T°'(1 —0,—2]/7(6,—0,)

—(1-26,+6) (17)
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The result for constant 0 is obtained immediately by setting 6, =0, =6:

1
x§=(1—9)2.<7—1) (18)

The term (1/A—1) in (18) is the relative difference of the squares of the axes of the
ellipsoidal wave front of the horizontally polarized shear waves:

b* cua 1 a?—b? ce6—Css 2 1
A ot X e o, o Mg

We re-formulate (17) in terms of e? and obtain

ez 2
> (1-0,) [1 —9,-2(0,—0) <“’477i+—"'—)]<

€

e 2
<X2<eX(1-9)) [1—eh+z(9h-e,) <1+—2—2— ““)}

€

(19)

The fraction in the two bounds in (19) is the series

The significant result is that for not-too-large e* the possible range of X? is much
smaller than its magnitude:

X2 4X2 i
T:@:&(1—eh)(1—e,)+§e“(eh—e,)2 (20)
and
2 sznax~Xr%1in 1 4
AX? = Zmax = Tnin 5 2 e* (0, —6) (1—0,) +(1-0,). (1)

(20) and (21) indicate that the magnitude of the error one makes in assuming an
elliptical wavefront (corresponding to X*=0) is significantly larger than the error
one can make by neglecting anisotropy (it would be zero for X? = X according to (18)).

However, the curvature of the quasi-longitudinal wave front can be determined in
a much more quantitative manner as shown in the following section.

2.2 BOUNDS FOR THE CURVATURE OF THE WAVE FRONT
We have from (2), (3), and (14)

Tp_Cii_ 4Ca

it 32 22
rg C33 (C33—Cas) (22)
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From the conversion rules (5) we obtain

S1t oy 2t)+ (1—o)p and (23)
C3s3

Caa _ P (24)
C33—C4a 1—p’

and thus after some algebraic manipulation

1=1 =1+4h———

m h, Whereh=p—T. (25)

P _144(p—1)
Tk

From this general expression for the radius of curvature of the quasi-longitudinal
wave front follows the ‘principal theorem’ for the special case p=rt, that is, for
instance, for constant 6. However, we can have p =1t and thus r, =r¢ even for non-
constant 0: this follows from the fact that (25) does not contain o, thus ¢ can
assume arbritrary (permitted) values, while constant 6 implies 6 = 1.

Bounds for the curvature can be derived via (25) from the bounds for h. The
extreme values of h follow from (15,1) and (15,2) to

hpyo=—(1—2) At+]/(1—2) (AB? —LAT?), (26)
whereAt=t—9'—-+2_eﬂ and A9=e“—;(h.

The largest and the smallest value of h are obtained for At= — A8 (1=0,) and
At=A06(t=0,); substitution of these values into (26) gives

(0,/0,, ) =(1—21) (0,—0,), t=6, and (27)

max

h,in(0,/04, A)=—(1—2) (6,—0)), t=6, (28)

Inspection of the geometric relationship (see figure 1) between the surfaces of equal
rp/rx defined by (25) (hyperbolic cylinders with the c-axis as generator) and the
sets of extremal pairs h, T defined by (26) (these are line segments in the h-t-plane
from (0, 6,) to (h,,,. 6,) and from (h,,,, 6,) to (0, 8,) with h;, and h,,, according to
(27) and (28), respectively) shows that the largest radius of curvature is obtained
directly by substituting (27) into (25):

1-0,
1—(1—7%)0,— 10,

210,10, 1) =1+4(6,—0,) (1—2)

K max

(29)

However, the corresponding relationship for the smallest radius of curvature,
namely
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0

Figure 1. Lines of equal (normalized) radius of curvature in the h-t-plane. ‘Permitted’ are pairs h. 1
inside the parallelogram 0, 0, —hp,y, 0, —0, 8, —h,;,. 8,. The parallelogram for 8, =0, 8, =3 (i.e., for
L =0) is indicated by broken lines. The radius of curvature is independent of A and k, thus surfaces of
equal normalized curvature are hyperbolic cylinders.

1—6

h
1—20,—(1—1)6, 30

210,10k )= 1-4(0,— 0) (1-)

K |min

is valid only if at the point of intersection the slope —dt/dh of the lines of equal
(rp/rx — 1) is at most equal to that of the line segment, i.e., if h?/(1—1)*<1—X. To-
gether with (23) this leads to the condition

J(1=%) (8,—0)=(1—6,). (31)

Inequality (31) is satisfied in all practical cases, since few known media have 6 =0.5
or larger, thus the left hand side is nearly always smaller than the right hand side, even
for A — 0. However, for theoretical considerations (30) should not be used without
checking (31). For instance, if one looks for the absolutely lowest permissible radius of
curvature of the P-wave front near the axis of symmetry with the help of (30), one
would get

3 3 1 1 . 3 3
(0 ‘—,0>—1—4-7-7=Z, obtained for rzj. h=7



However, (31) is not satisfied, since % is larger than (1 —% . The radius of cur-

vature obtained in this manner is indeed not the smallest possible. The smallest turns

out to be
el fold phegoae L3 Sy 1 8
e min<0} 5 0)—1 4 53 =0, obtained for 1= 5 h= 5
This value can be accepted, since (31) is satisfied. The highest possible value of e
is obtained for t=0, h=.75: Tk
fs 3 3 1
= T = - — =13.
'« mx<°‘4’°> S I T
4

The corresponding ellipsoid has infinite radius of curvature (because A — 0).

Equations (29) and (30) constitute bounds on the radius of curvature in stratified
media with constituents with 0 in the (closed) interval [0,, 6,]. Such bounds are still
unsatisfactory if A is not known. If the highest and lowest p are y, and p,, respect-
ively with p, > p,, we have as bounds for A

_ 2
1—<ELJﬂ>§x<1. (32)
My + 1y

The equality sign prevails if p, and p, contribute exactly % of the compound medium.
Thus we finally have -

2
—4(6h—6|) <p'h_ul> - 1_9!1 . & rP_rK<
My + 1y An An g
1_ . el— 1— D eh
Hm Hm
(33)
Ap\? 1—6
<4(6,—6)) (u_l»l> AL\ l A2
() e (-(e) )
Hm Hm

For example, with p,/p,=4, 6,=0,25, 6, =0.35, we have

0.864 <P <1.151.
I'g

For the radius of curvature of ellipsoids with the same axes (and overestimated 1 — )
we would have

1.29< "E< 1.67.
I'x

65



Inequality (33) — or its equivalent with [(p, — pu,)/(u, + p,)]? replaced by 1 — A — does
not contain the curvature of the ellipsoid with the same axes at all. Though at the
beginning of this chapter we started with the fundamental inequality — which can be
read as an inequality containing r,/r¢ and rg/rg — the second term was lost on the
way (in the step from (23) to (25)). What we have obtained is a reformulation of the
‘principal theorem” allowing for a range of 0 instead for constant 0.

3. THE SLOWNESS SURFACE OF THE K-MEDIUM AND ITS RELATION TO THE VELOCITY
DETERMINED FROM REFLECTION TIME MEASUREMENTS

3.1 THE SLOWNESS SURFACE OR THE K-MEDIUM

The ray geometric properties of an anisotropic medium can be represented by any-
one of its characteristic surfaces. These are representations in polar coordinates of the
velocities and their inverse (the slownesses) of plane waves and rays, respectively. For
transversely isotropic media a section of these surface containing the axis of symmetry
is sufficient. The four surfaces can be converted into each other by the operations
‘inversion’ (mapping by inverse radii), ‘tangent surface/first pedal surface’, and “polar
reciprocity’, if we ignore simple changes of scale (fig. 2). Polar reciprocity exists be-
tween surfaces F, und F, if to each point A; on F; there exists a point A, on F,
such that the radius vector from the origin to A, is parallel to the surface normal in
A,, and vice versa.

Figure 2. Relation between the slowness surface S, the normal surface N, the wave surface W, and the ray
slowness surface R. The pairs N, S and W, R are inverses of each other (i.e., “reciprocal radii” map N
into S, S into N, W into R, and R into W): N is the first pedal of W (i.e., the locus of plumb lines from
the origin onto the tangent planes of W), and R is the first pedal of S. Since both mapping by reciprocal
radii and formation of pedals preserve angles, S and W are polar reciprocals of each other (in corresponding
points the normal to S is parallel to the radius vector of W and vice versa).
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Notwithstanding the complete equivalence of the four surfaces, the slowness surface
is to be preferred by far: not only is the mathematical representation simpler than
for the other surfaces, it also embodies the most important parameters — for instance
those needed for the determination of refracted and reflected rays at interfaces — in
the most convenient form. In Krey and Helbig (1956) a parameter representation for
the slowness surface of quasi-longitudinal wave in K-media was given that contained
only two parameters related to the medium — Q, the square of the ratio of the velocity
in horizontal and vertical direction, and another parameter that can be expressed
through Q and Poisson’s ratio. Since a K-medium has only two dimensionless elastic
contants, it should be possible to express a/l ray geometric properties in terms of
two arbitrarily chosen parameters, for instance in terms of

T= p=(VS‘L/VP,l)2
and

>"=(VSH.J./VSH.II)2’

where the symbols | and || designate propagation at right angles to and parallel to
the plane of stratification, respectively. In this form the normalized slowness surface
is described by

2 2
e 1+2+41e)Ww+w (34)
BT+ 2441w+ (1 +41° (1 —1)W?

and
W+ w?

. 1
zm, where agaimm 6227—1. (35)

tg*p

The curve parameter w is related to the direction of the wave normal and the
direction of particle displacement by

w=tg(a) - tg(B), (36)

where @ is the angle between the (quasi-longitudinal) displacement direction and the
axis of symmetry and f is the angle between the wave normal and the axis of symmetry.

To obtain the slowness in direction B, w is determined from (35) and substituted
into (34).

The other characteristic surfaces can be obtained in the following way:
a) normal velocity surface: v(w) =1/(n(w)).
b) the ray slowness surface is the first pedal surface of the slowness surface, thus

0, (W) =n(w) - cos(y(w) —B(w)), (37)
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where v is the angle between the normal to the slowness surface (i.e., the direction
of the ray) and the axis of symmetry.

¢) The wave surface is the locus of the endpoints of the ray-velocity (or group velocity)
vectors. It is the inverse of the ray-slowness surface, thus

1

8= 1 (W) - cos(r (W) —B(W) (38)
For (37) and (38) we need v, which can be obtained from
_ dny/dw d(n3)/dw

Y= " dn, jaw ~ P G (39)

where n; and n; are n-sinf and n - cos B, respectively. For the K-medium we obtain

1+21-e%-w

1+2w+Q2+41e’—1)wW?"’ (40)

tgy/tgB=1+81t(1—1)-e?-w

3.2 THE t?vs x? PLOT FOR A HOMOGENEOUS K-MEDIUM

The signal from a virtual source at x =0, z=1 arrives at detector position (x, 0) at
time t=|/(1+ x%)/g(y), where y = tan ! (x). Thus we have as parameter representation
of the t? vsx? plot

2 WHW e 1+2te’w -
YT T A+ 4w |i1+81(1 e VI ow+2+dtel—nw? ()

and
2 2 1+Q2+41e)w+w? 5
E={1+x7 1+2+4eH)w+(1+4e?(1—1W? cos”(Y—B) (42)
with
cos? (Y —B) = (3)
1+tg(y—B)
and
tgy
tgf-( =5 —1
_tgy—tgp (tgﬂ >
e =P =T gyiep 141g2p 8L .
tgp

Substitution of (35) and (40) into (44) and of the result into (43) and then into (42)
leads to an analytical parameter-expression for the t* vsx* plot over a K-medium. Un-
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fortunately, the resulting expressions are very unwieldy. However, a numerical evalua-
tion is not difficult. The curve labeled vi(x?) in figure 3 was obtained in this way for
1=0.3ande?=1.33....

'_] ' ' 1 X2

Figure 3. Hypothetical t* — vs — x? plot for P and SH wave from virtual source at z=1 for A =3/7 and
1=0.3.

3.3 AN APPLICATION TO THE COMBINED USE OF LONGITUDINAL AND
TRANSVERSE WAVES

Figure 3 shows a t? vsx? plot of two reflections, one from an SH-experiment and one
from a P-experiment. The fact that the SH-branch is straight while the P-branch is
convex upwards indicates that the medium is homogeneous and transversely isotropic
(in an inhomogeneous medium both branches would be curved, in a homogeneous
isotropic medium both would be straight). Standard velocity interpretation would lead
to the assumption that the two branches could not be caused by the same reflector,
since then t?(0) - v2 =z should give the same result in both cases (i.e., the backward-
extrapolation of the tangents to the two curves at x*> =0 should intersect the x-axis
at —z?). The reason for this discrepancy is simple: the SH-front is elliptical, and thus
the t?vsx? line gives the velocity in horizontal direction, while the relationship z? =
t2-x*/(t* —t2)=1t2 - v, is valid only if v, , is a measure for the velocity in vertical
direction.

If more is known about the medium, one can make use of the internal relationship
between the parameters of the different sheets of the wave surface to obtain informa-
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tion on the ratio of the axes of the SH-ellipsoids. How this relationship could be
utilized is shown for a K-medium. The ratio of the slopes of the regression lines one
observes is

Y =cgg/C33=T/A,

the ratio we need is c44 /33 =T.

We can now plot any observable quantity affected by t and A for the observed W
and a set of values of t and compare the ‘master curves’ thus obtained with the ob-
servations. It is obvious that the effects can, at best, be small, therefore several such
matchings might be necessary. For the present numerical example (with arbitrarily high
accuracy) Vp(X), the square root of the slope of the tangent to the t* vsx*-curve was
used. The slope was obtained from (41)—(44) with small stepsize (Ax*=.0355atx =1),
V=.7 and t=.2, .225, .25, .275, .3, .325, .35, .375, and .4. Fig. 4 shows the quantity
(vp(x) — vp(0))/vp(0) as function of x. As to be expected in a numerical example of
this type, the curve for t=.3 (vg,/vp, =.548, A =.429) matches. What is important
is not this agreement, but the estimate that, in order to obtain the velocity ratio with
an accuracy of 5 percent, the slope must be reliable within about 6 percent at an offset
equal to twice the depth of the reflector.

It goes without saying that this is not meant as a suggestion for practical application.
One of the complications is that we rarely are faced with homogeneous medium. It
might be possible to separate the inhomogeneity-induced curvature from anisotropy-

Cos/Cs3 = 0.7 g, /¥, =837

vp(x/z)-tb(O)
vp(O)

5 d
R
it Wl
535 .2 447
L 0.5 567 225 47

598 25 5
.627 275 .52
655 .3 548
681 325 570
707 35 592
732 375 612
756 4 532

1 i 1

1 2 x/z

Figure 4. Set of curves representing square root of inverse slope of the t* — vs — x? curve for
A - T=cge/C33=0.7 and .2 < 1< .4. The curve of figure 3 corresponds to the curve labled t=.3.
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induced curvature with the help of the SH-branch, but this would reduce the accuracy
even further. [ also do not intend to create the impression that the slope of the t*vsx?
curve — or its square root — is the most suitable parameter for such calculations. It is to
be hoped that there are other parameters that can be observed more directly and
applied more conveniently.

We might question how well the assumption of a K-medium is satisfied in a
particular situation. If a range of 0 has to be taken into account, the tight relation
between the parameters of the different sheets of the slowness surface (and the other
characteristic surfaces) is relaxed, and the above strict relations have to be replaced
by bounds (similar to the derivation in section 2.1), and only if the intersection of all
bounds used becomes sufficiently small canthe general method be applied.

4. CONCLUSIONS

The original theorem was valid for K-media only, i.e., for layer sequences where all
constituents had the same ratio of transverse to longitudinal velocity. No estimate
existed for the degree of deviation from a sphere for situations where this condition
was not (or not exactly) satisfied. The bounds supplied by the original inequality, on
the other hand, were so wide that their only significance was to relegate the elliptical
wave front for P-waves to the status of an unattainable limit. With the re-formulation
presented here, the bounds are those compatible with the actually occuring range of
velocity ratios (instead of the range permitted by stability considerations), and the
theorem is now nothing but the special case of the inequality: if the range degenerates
to a single value, the upper and the lower bound coincide.

The new formulation of the bounds not only allows to estimate the deviation of the
P-wave front from a sphere for layer sequences with a range of velocity ratios for the
constituents, but also allow to establish limiting relationships between the geometric
shapes of the P-wave front and the SH-wave front (for K-media this is a strict relation-
ship). Such relationship might be used in combining P-wave- and SH-wave observa-
tions, but it remains to be seen whether this approach leads to practical results.

REFERENCES
Backus, G. E., 1962, Long-wave elastic anisotropy produced by horizontal layering, Journal of Geophysical
Research 67, 44274440

Berryman, J. G., 1979, Long-wave elastic anisotropy in transversely isotropic media, Geophysics 44,
896-917

Berryman, J. G., 1980, Reply to K. Helbig, Geophysics 45, 980-982.

Helbig, K., 1979, Discussion on “The reflection, refraction, and diffraction of waves in media with elliptical
velocity dependence” (F. K. Levin), Geophysics 44, 987-990

Krey, Th., and Helbig, K., 1956, A theorem concerning anisotropy of stratified media and its significance
for reflection seismics, Geophysical Prospecting 4, 294302

Levin, F. K., 1978, The reflection, refraction, and diffraction of waves in media with elliptical velocity
dependence, Geophysics 43, 528-537

Postma, G. W., 1955, Wave propagation in a stratified medium, Geophysics 20, 780806

71



	Festschrift_Theodor_Krey_04__0000_57
	Festschrift_Theodor_Krey_04__0001_58
	Festschrift_Theodor_Krey_04__0002_59
	Festschrift_Theodor_Krey_04__0003_60
	Festschrift_Theodor_Krey_04__0004_61
	Festschrift_Theodor_Krey_04__0005_62
	Festschrift_Theodor_Krey_04__0006_63
	Festschrift_Theodor_Krey_04__0007_64
	Festschrift_Theodor_Krey_04__0008_65
	Festschrift_Theodor_Krey_04__0009_66
	Festschrift_Theodor_Krey_04__0010_67
	Festschrift_Theodor_Krey_04__0011_68
	Festschrift_Theodor_Krey_04__0012_69
	Festschrift_Theodor_Krey_04__0013_70
	Festschrift_Theodor_Krey_04__0014_71

