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1. I TROD U TIO 

The in itation to write for thi olume eau ed me to re-read the artic1e I publi hed 
together with Th. Krey nearl twent -fi e ear aga (Krey and Helbig 1956). The 
artic1e e entiallyeon i ted of: 
(i) an inequality eoneerning eurvature that tate that for ani otropy cau ed by 

layering with i otropie eon tituent the eurvature of the qua i-longitudinal wave 
front in the vieinity of the axi of ymmetry i at lea t equal to the eurvature of 
the ellip oid with the ame a e . 

(ii) the prineipal theorem, that tate that - pro ided the ratio / 1 i the ame for 
al1layer - in the ieinity of the axi of ymmetry the wa e front of eompre ional 
wa e deviate from a eo-eentrie phere only by term of fourth and higher order' 
and 

(iii) a eomputation of eorreetion for greater dip whieh dealt with the po ition and 
orientation of refleeting element (thi wa my eontribution to the paper). 

In the pre ent paper I eall a medium that ati fie (ii) a K-medium. 

Today one eould ay that the inequality i more ignifieant than the theorem 
beeau e the ratio of tran er e to longitudinal veloeitie i no longer a sumed, but 
mea ured in weIl and it doe not appear to be eon tant to the expeeted degree. 
Moreo er, there i a eertain reluetanee to abandon elliptieal wa e front for imple 
ealculation . Thi might be due to ome degree to the phra e at lea t equal' in the 
inequalit . It eem therefore important to trengthen the inequality. The expre ions 
in the la t eetion, on th other hand dealt with the po itioning of refleetion element 
only. A fe year after the artic1e wa publi hed the determination of taeking eloei­
tie from refleetion data beeame the tandard ofthe indu try. The ealculation of arrival 
time i implieit in the expre ion but omewhat ineon enient to earry out. Therefore, 
a re-formulation of the e expre ion - preferably in term of a parameter more 
praetieal than Poi on ratio - eeme to be indieated. 

A further rea on to look at the matter again i beeau e horizontally polarized hear 
wa e ha e eome into u e in reeent year . The full potential of refleetion ei mie 
u ing hear wa e lie in the eombination with refleetion of longitudinal wa e . To 
thi end the veloeitie of both wave type in the vertieal direetion are neee ary. For 
the longitudinal wa e ordinary eloeit determination - for in tanee from the lope 
of the regre ion line through the t2-ver u x2 data- ork by irtue of the theorem 
e en if layering cau e the material to be ani otropie pro ided the velocity ratio (or 
Poi on ratio) doe not fluetuate too mueh. Howe er horizontally polarized hear 

a e have an elliptieal wa e front and for ueh a wa e front the lope of the 
regre ion line eorre pond to the horizontal eloeit (e. g., ee Le in 197 and Helbig 
1979). 

*) Univer ity af Utrecht, In titute far arth cience. Utrecht 
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2. A I EQUALITY CO CER I G THE CUR TURE OF WA VE FRa TS 

The radius of curvature of the qua i-longitudinal wa e front in the icinity of the 
a i of yrnmetry of any tran er ely i otropic medium i 

(1) 

and rK = t· V(C3 3/8) i the radiu for the K- edium i. e. for con tant e = (v / J2. 
According to the theorem the radiu of curvature of the qua i-longitudinal wa e 
front for a K-medium i equal to that of the concentric phere. For the ellip oid with 
the axe t· V(c 33 /8) and t . V(cll /8) we ha e 

(2) 

and thu 

(3) 

The curvature inequality is shown to hold if it can be hown that the term in 
bracket i po iti e emi-defmite or if the fundamental inequality (Berryman 1979) 

(4) 

hold . In 1956 thi inequality wa known to hold for tratified media with two di tinct 
con tituent (Po tma 1955). However in 1962 it wa hown that there are tratified 
media that cannot be modeled with ju t two con tituents (Backu 1962) thu ome 
doubt wa ca ton the general alidity of the fundamental inequality. Meanwhile two 
independent proof: ha e been publi hed (Berryman 1979 19 0 Helbig 1979) howing 
that (4) i alid for any number of table i otropic layer . Stabilit i guaranteed if 
O~e<3/4). 
Berryman' proof contain the key to a generalization and trengthening of the 
fundamental inequalit . 

To obtain bound for any ani otropy parameter one tart with the bound on the 
fi e ela tic parameter de cribing the tran er ely i otropic medium. The e bound 
ha e to be traced back to the bound on the ela tic parameter of the con tituent . 
While in principle any et of five (independent) parameters for the tran ver ely i 0-

tropic medium and any two (independent parameter for the i otropic con tituent 
would do the implicity of the proof depend crucially on thi choi e. Con er ion 
rule" erve to convert the cho en et of parameter to the common et. 
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Sinee we are intere ted in dirnen ionle ratio only we ean u e arbitrarily normalized 
parameter thu redueing the number for the tran ver ely isotropie medium to fOUL 
The et we u ei ba ed on tho e introduced by Backu (1963): 

(5) 

p~ (c~J / ( :.) and 
Equation (5) do double duty a the mixing rule ) and as conver ion rules. If 

u ed a mixing rule - i. e. for the calculation of the parameter A 't P G of the 
compound medium from tho e of the con tituent - the angled bracket have to be 
read a 

in other word a the weighted average of the argument. If u ed a conversion rule , 
the angled bracket are read a ordinary parenthe e , e. g. A = C44 / C66' A mixing 
rule the equation (1) could be applied even to ani otropic con tituent . If the 
con tituent are i otropic we have 

and 

From (5) and (6) we ha e 

LP i8i='t , 

LPi 8i).li 
LP i ).l i 

1 

p 

(6) 

(7) 

and 

G. 
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It i obviou that p 0" and 1: are weighted a erage ofthe 8 i and thu are con trained 
to the open interval (81 8J where 8. and 8h are the lowe t and highe t alue for the 
con tituent re pectively. The tri ial ca e of a ingle con tituent i excluded and the 
interval (8) 8)) i defined a open. Thu we have 

81~ 8~ 8h 

81< p< 8h 

81< 0" < 8h , and 
81< 1:< 8h . 

( ) 

Further con traint are obtained with the help of the Cauchy-Schwartz inequality 

(9) 

from which we ha e immediately 

The equality ign pre ail for jli == jl, in wh ich ca e we ha e from (7) al 0 p = 0" = 1: 

i. e., the compound medium i i otropic. We exclude thi ca e al 0 and u e henceforth 
A< 1. 
The Cauchy-Schwartz inequalit can be re-written a (ee Berryman 19 0) 

Inequality (10) hold for any con tant ß that doe not au e a change of ign in 
any argument (except a change of ign in all argument) i. e. for 

(11) 

Sub titution of (11) into (10) yield 

The two inequalitie (12) are' trong inequalitie ince we have excluded the ca e 
of con tant jl. On the other hand the difference between the two side of the inequali­
tie can be made arbitrarily mall for an A by choo ing uitable (po iti e) Il> 0 and 
uitable 8i from the open interval (81 8J ( ee Backu 1963). 

If we expre (4) with the help of (5) in term of A, p and 1:, we obtain 
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The inequality hold becau e the term in the quare bracket i po iti e definite. Thi 
i ea il een from (12) if on replace 8h b 1 (> 8h). The inequalit in (13) i al 0 

a trong inequalit but it differ e entiall from the inequalitie (12) : for a A differing 
di tinctly from 1 the term in the quare bracket cannot be made arbitraril mall 
- ince eh< 3/4< 1 - in other word there mu t be a lower bound different from O. 
The equation 

2=[Cll -C44)·( 33-C44)-(C13+C44)2] / (4c33C44)= i (1-p)·(1 - cr)-(1-'t)2 

(1 4) 

define a et of parabolic hyperboloid in the Carte ian p - cr - 't- pace. Line of equal 
X2 in the plane 't = 't1 are h perbolae (where 'tl i an arbitrary but fi ed alue of 't) 
with a ymptote p = 1 and cr = 1. In the quadrant p < 1 cr < 1 the et-parameter X 2 

incr a e with increa ing di tance from the a ymptote . 
The region of permitted triplet cr, p 't i the open et bounded by 

(15) 

For a gi en 't1 the region i a lozenge- haped area bounded b two con traint­
hyp rbolae with a ymptote p = 81 cr = 81 and p = 8h cr = 8h re pecti ely. The lowe t 
and high t permitted alue of X 2 corre pond to tho e hyperbolae of the t (14 
who e apex coincide with th apex of the con traint hyperbolae (1 5) i. e. for 

(16) 

Sub titution of Pa. band cra. h from (16,2) into (14) gi e the lowe t perrnitted value 
of X2 for 't = 't l' and imilarly e get for Pa. I the highe t permitted value of X2 for 
't = 't 1. The ab olutel lowe t alue of X 2 i obtained for the highe t permitted 't 

(nd imilarly for the ab olutel highe t perrnitted value of X 2). Thu we obtain 
bound for X2 by combining (162) (1 5,3), and (14) (or (16 1) (154) and (14)) for 
gi en 81 8h and A: 

1 ~ 8h (1- 8
h
+2 '\ 8 8 "( 8 8)) X2 1- 81 

( 8 2111(8 8 ) I\. I\. ( b - I - I\. 1 + b - 2 I < < - A- 1 - 1- V I\. h - I -

(17) 
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The re ult for con tant 8 i obtained immediately b etting 8. = 8h = 8: 

X~~(1-9)2U -1) (18) 

The term (l /A -1) in (1 ) i the relati e difference of the quare of the axe of the 
ellip oidal wave front of the horizontally polarized hear wave 

We re-formulate (17) in term of e2 and obtain 

The fraction in the two bound in (19) i the erie 

1 
A=~. +e 

(19) 

The ignificant re ult i that for not-too-Iarge e2 the po ible range of X2 i much 
maUer than it magnitude: 

(20) 

and 

(21) 

(20) and (21) indicate that the magnitude of the error one make in a uming an 
elliptical wa efront (corre ponding to X 2 = 0) i ignificantl larger than the error 
one can make by neglecting ani otropy (it would be zero for X2 = X~ according to (18». 

However the curvature of the qua i-longitudinal wave front can be determined in 
a much more quantitati e manner a hown in the following ection. 

2.2 BOU 0 FOR THE C RVATURE OF THE WAVE FRO T 

We have from (2) (3) and (14) 

r p = CI I _ 4C44 . X 2 

r K C 3 3 (C33 -C44 ) 
(22) 
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From the conversion rules (5) we obtain 

and thus after ome algebraic manipulation 

P 
1-p' 

(23) 

(24) 

r 1 - L 1- L 
--.f.=1+4(p-L) 1 ( ) =1+4h 1 h ' whereh=p-L . (25) rK -L- P-L -L-

From this general expression for the radius of curvature of the quasi-longitudinal 
wave front follow the principal theorem' for the special ca e P = L, that is for 
instance, for constant 8. However, we can have P = Land thus r p = rK even for non­
constant 8: this follows from the fact that (25) doe not contain 0', thus °' can 
as urne arbritrary (permitted) value while con tant 8 implies °' = L. 

Bound for the curvature can be derived ia (25) from the bound for h. The 
extreme value of h follow from (15,1) and (15,2) to 

(26) 

where ~L=L and 

The largest and the smallest value of h are obtained for ~ L = - ~ 8 (L = 8\) and 
~ L = ~ 8 (L = 8h) ; substitution of these values into (26) gives 

(27) 

(28) 

Inspection of the geometrie relationship (see figure 1) between the surfaces of equal 
rp/rK defined by (25) (hyperbolic cylinders with the O'-axis a generator) and the 
sets of extremal pairs h L defined by (26) (these are line egments in the h-L-plane 
from (0, 8h) to (hmaJp 8\) and from (hmin , 8h) to (0, 8\) with hmin and hmax according to 
(27) and (28), respectively) show that the largest radius of curvature is obtained 
directly by substituting (27) into (25) : 

(29) 

However, the corresponding relation hip for the smallest radius of curvature, 
namely 
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Figure 1. Line of equal (normalized) radiu of urvature in the h-'t-plaoe. 'P rmitted are pair h. 't 
in ide the parallelogram 0, 9h - hmax , 9 1 -0, 9 1 - hm in , 9h • The parallelogram for 9 \ =0, 9h =j (i.e. for 
A. = 0) i indicated by broken line . The radiu of cu rvature i independent of A. aod k, thu urface of 
equal normalized cur ature are hyperbolic cylinder . 

(30) 

i alid only if at the point of inter ection the lope -d 'tjdh of the line of equal 
.(rp jrK-1)i atmotequaltothatofth line egment i.e. ifh2j(1-'t)2<1-A.To­
geth r with (23) thi lead to the condition 

(31) 

Inequality (31) i ati fied in all practical ca e inee few known media have e = 0.5 
or larger thu the left hand ide i nearly alway maller than the right hand ide e en 
for A ~ O. Howe er for theoretical con ideration (30) hould not be u ed without 
checking (31). For in tanee if one look for the ab olutel lowe t permi ible radiu of 
curvature of the P-wave front near the axi of ymmetr with the help of (30), one 
would get 

~I (0 1 ~, 0)=1 - 4 ' ~ ' ~ =~ obtainedfor't= 4
3 

, h = 4
3 

rK min 4 4 4 4 
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Howe er (31) i not ati lied inee! i larger than (1 - !). The radius of cur­

vature obtained in thi manner 1 indeed not the mallest po ible . The malle t turn 
out to be 

r p 1 ( 11
) 1 1 . 1 1 - 0 - 0 = 1 - 4 . - . - = 0 obtamed for 1: = - h = - -

r . 2' 2 2 ' 2' 2· K mm 

Thi value can be accepted, ince (31) i 
obtained for 1: = 0, h = .75: 

ati fied. The highe t po ible value of ~ 
rK 

; p 1 (0 1 ! ' 0) = 1 + 4.! 1 = 13 . 
K max 1-~ 

4 

The corre ponding ellip oid has infmite radiu of curvature (becau e A ~ 0). 
Equation (29) and (30) con titute bound on the radiu of curvature in tratified 

media with con tituent with S in the (do ed) interval [Sb Sh]. Such bound are till 
un ati factory if A i not known. If the highe t and lowe t 11 are 111 and I1h ' re pect­
ively with I1h> I1b we have abound for A 

1- (l1h - 111)2 ~ A< 1. 
I1h + 111 

(32) 

The equality ign prevail ifl1l and I1b contribute exactly+ofthe compound medium. 
Thu we fmally have 

(33) 

For the radiu of curvature of ellipsoid with the ame axe (and overe timated 1- A) 
we would have 

r E 1.29< - < 1.67. 
r K 
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Inequality (33) - or it equi alent with [(J.lh - J.ll) /(Jlh + Jll)F r placed b 1 - A - doe 
not eontain the eurvature of the ellip oid with the ame ax at all. Though at the 
beginning of thi hapter we tarted with the fundamental inequality - whieh ean be 
read a an inequalit eontaining rp/rK and rE/rK - th eeond t rm wa 10 t on the 
wa (in the tep from (23) to (25» . What we ha e obtained i a reformulation of the 
prineipal theorem allowing for a range of 8 in tead for eon tant 8. 

3. THE LOW E URFACE OF THE K- MEDIUM A D IT RELATIO TO THE VELOCITY 
DETERMI ED F ROM REFLECTIO TIME MEA UREME T 

3. 1 THE LOWNE URFA E OR THE K-MEDIUM 

The ra geom trie propertie of an ani otropie medium ean b repre ented b any­
one of it eharaet ri tie urfaee . The e are repre entation in polar eoordinate of the 
elo itie and their in er e (the lowne e ) ofplane wa e and ra ,re peeti ely. For 

tran er ely i otropie media a eetion of the e urfaee eontaining the axi of ymmetry 
i uffieient. The four urface ean be eon erted into eaeh other b the operation 
in er ion (mapping b in er e radii) tangent urface/fir t pedal urface', and polar 
reeipro ity if we ignore imple hang of cale (fig . 2). Polar reeipro ity e i t be­
tween urfa e F I und F 2 if to eaeh point Al on F I th re exi t a point A2 on F 2 

ueh that the radiu eetor from the origin to I i parallel to the urfae normal in 
A 2 and ice er a. 

N 

'\ 

\ 
\ 

\ 

Figure 2. Relation b tween th lowne urfaee, the normal urface the wave urfaee W, and the ray 
lowne urfaee R . The pair , and W R are inver e of eaeh other (i. e., 'reeiproeal radü" map 

into , into ,W into R, and R into W)· i the fir t pedal ofW (i.e. the locu ofplumb line from 
the origin onto the tangent plane of W), and R i th fir t pedal of . inee both mapping by reciproeal 
radii and formation of pedal pre erve angle, and Ware polar reciproeal of each other (in corre ponding 
point the normal to i parallel to th radiu vector of Wand vice ver a). 
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otwith tanding the complete equi alence of the four urface the lowne urface 
i to be preferred by far: not only i the mathematical repre entation impler than 
for the other urface it al 0 embodie the mo t important parameter - for in tance 
tho e needed for the determination of refracted and reflected ray at interface - in 
the mo t con enient form. In Krey and Helbig (1956) a parameter repr entation for 
the lown urface of qua i-longitudinal wave in K-media wa gi n that contained 
only two parameter related to the medium - Q, the quare of the ratio of the velocity 
in horizontal and ertical direction and another parameter that can be expre ed 
through Q and Poi on ratio . Since a K-medium ha only t 0 dirnen ionle ela tic 
contant it hould b po ible to xpre all ray geometric propertie in term of 
two arbitrarily cho en param ter for in tanc in t rm of 

and 

where the ymbol .1 and 11 de ignate propagation at right angle to and parallel to 
the plane of tratification, re pecti el . In thi form the normalized lowne urface 
i de cribed by 

and 

2 1 +(2+4-re2)w+~ 
np, K = -1-+-(-2-+-4--r-ez"')-w- +- ( 1- +- 4--r -';2-( 1- -- -r)-)-w"""2 

w+w2 
t 2ß-g - -1-+---'-(-1 +----,-4--re--,;:2-) w-

. 2 1 
where agam e = T - 1. 

(34) 

(35) 

The curve parameter w i related to the direction of the wa e normal and the 
direction of particle di placem nt by 

W=tg(Cl) · tg(ß) (36) 

where Cl i the angle between the (qua i-longitudinal) di placement direction and the 
axi of ymmetry and ß i the angle between the a enormal and the axi of ymm tr . 

To obtain th lowne in direction ß w i determined from (35) and ub tituted 
into (34). 

The other characteri tic urface can be obtained in th following way: 
a) normal velocity urface: (w) = 1j(n(w». 
b) the ray lowne ur face i the fir t pedal urface of the 10 ne urface thu 

nra/w) = n(w) . co (r(w) - ß (w» , (37) 
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where y i the angle between the normal to the lowne urface (i. e. the direction 
ofthe ray) and the axi of ymmetry. 

c) The wa e urface i the locu ofthe endpoint ofthe ray- elocit (or group elocity) 
ector . It i the in er e of the ray- lowne urface thu 

1 
g(w) = n (w) . co (y(w) - ß (w)) . (3 ) 

For (37) and (3 ) we need y which can be obtained from 

tgy= 
d (n~) /dw 

- tg ß d (ni) /dw (39) 

where n1 and n3 are n· in ß and n · co ß re pecti ely. For the K-medium we obtain 

(40) 

3.2 THE t2 v x 2 PLOT FOR A HOMOGE EOU K-MEDI M 

The ignal from a virtual ource at x = 0 z = 1 arrive at detector po ition (x 0) at 
timet=V(1+x 2)/g(y) wherey=tan - 1 (x). Thu we ha ea parameterrepre entation 
of the e x2 plot 

and 

with 

and 

2 w + w 1 1 2 + 1:e w 41 2 [ 1 2 2 J2 
x = 1+(1+41:eZ)w' + 1: ( -1:)' e . w 1+2w+(2+41:ez- 1:)wZ () 

co 2(y - ß) 
1 + tg(y- ß) 

tg(y - ß) 
tgy-tgß 

l +tgy tgß 

tgß· - -1 (
t
gy 

) 
tgß 

(42) 

(43) 

(44) 

Sub titution of (35) and (40) into (44) and of the re ult into (43) and then into (42) 
lead to an analytical parameter-expre ion for the t2 x2 plot 0 er a K-mediuffi. Un-
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fortunately the re ulting expre ion are ery unwieldy. Howe er a numerical e alua­
tion i not difficult. The curve labeled ~(X2) in figure 3 wa obtained in thi way for 
't = 0.3 and e2 = 1.33 .... 

....- : -- . . ....- . ,/' ....- . . 

- - -, . 
O· Y ~~ .. 

..t / .. _. 
/ . - . - . 

-1 

,/' 

,/' 

--- .--- . 

-

Figure 3. Hypothetical t2 
- v - x2 plot for P and SH wave from virtual ource at z = 1 for A = 3/7 and 

<=0.3. 

3.3 A APPLICATIO TO THE COMBI ED E OF LO GITUDI AL A D 
TRA ERSE WA E 

Figure 3 how a e x2 plot oftwo reflection one from an SH-experiment and one 
from a P-experiment. The fact that the SH-branch i traight while the P-branch i 
con ex upward indicate that the medium i homogeneou and tran versely i otropic 
(in an inhomogeneou medium both branches would be cur ed, in a homogeneous 
i otropic medium both would be traight). Standard elocity interpretation would lead 
to the a umption that the two branche could not be cau ed by the ame reflector 
ince then t2 (0)· 2 =Z2 hould give the ame re uIt in both ca e (i.e. the backward­

extrapolation of the tangent to the two curve at x2 = 0 hould inter ect the x2-axi 
at _ Z2). The rea on for thi di crepancy i imple: the SH-front i elliptical and thus 
the e x2 line gi e the elocity in horizontal direction while the relation hip Z2 = 

t~ . x2 /(e - t~) = t~· 2tack is alid only if stack i a mea ure for the elocity in ertical 
direction. 

If more i known about the medium one can make use of the internal relation hip 
between the parameter of the different heet of the wave surface to obtain informa-
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tion on the ratio of the axe of the H-ellip oid . How thi r lation hip could be 
utilized i hown for a K-medium. The ratio of the lope of the regre ion line one 
ob erve i 

the ratio we n ed i C44 !C3 3 = 't. 
We can now plot any ob ervable quantity affected by 't and A for the ob er ed \jJ 

and a et of alue of't and compare the 'ma ter curve ' thu obtained with the ob-
ervation . I t i ob iou that the effect can at be t be mall therefore e eral uch 

matching might be n ce ary. For the pre ent num rical example (with arbitraril high 
accurac ) Vp (X) the quare root of the lope of the tangent to the t2 x2-curve wa 
u ed. The tope wa obtained from (41)- (44) with mall tep ize ( x2 = .0355 at x = 1), 
\jJ =.7 and 't =.2 .225, .25 .275, .3 .325 .35 .375, and .4. Fig. 4 how the quantity 
( p( ) - p(O)) I p(O) a function of x. A to be e pected in a numerical example of 
thi type the curve for 't = .3 (v J./vpJ. = .54 A = .429) matche. What i important 
i not thi agreement, but the e timate that in order to obtain the velocity ratio with 
an accuracy of 5 percent the lope mu t be reliable within about 6 percent at an off: et 
equat to twice the depth of the reflector. 

It go without a ing that thi i not meant a a ugge tion for practical application. 
One of the complication i that we rarely are faced with homogeneou medium. It 
might be po ible to parate the inhomogeneit -induced curvature from ani otropy-

"p (x I z) - "p( 0 ) 

vp ( 0) 

lL Iv.p" = .837 
"5/1 !1.. 

~Iff 

~vj1 ... 

. 535 2 
0 .5 
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Figure 4. et of curve repre enting guare root of inver e lope of the t2 
- v - x2 curve for 

/... . "[ = C66/ C33 = 0.7 and .2 < "[ ~ .4. The curve of figure 3 corre pond to the curve labled "[ = .3 . 



induced urvature wi~h the help of the H-branch but thi would reduce the accuracy 
e en further. I al 0 do not intend to create the impre ion that the lope of the t2 

2 

curve - or it quare root - i the mo t uitable parameter for uch calculation . It i to 
be hoped that there are other parameter that can be ob erved more directl and 
applied more con eniently. 

We might que tion how weIl the a umption of a K-medium i ati fied in a 
particular ituation. If a range of e ha to be taken into account the tight relation 
between the parameter of the different heet of the lown urface (and the other 
characteri tic urfac ) i relaxed and the abo e trict relation ha to be replaced 
by bound (imilar to the derivation in ction 2.1) and only if the inter ection of alt 
bound u ed become uffici ntly mall can 'the general method be applied. 

4. CO CLU JO 

The original theorem wa valid for K-media only i. e. for la er equence wh r all 
con tituent had the ame ratio of tran er e to longitudinal elocity. 0 e timate 
e i ted for the degree of de iation from a phere for ituation where thi condition 
wa not (or not exactl) ati fi d. The bound upplied by the original inequality on 
the other hand wer 0 wide that their only ignificance wa to relegate the elliptical 
wave front for P-wa e to the tatu of an unattainable limit. ith the re-formulation 
pre ented here the bound are tho e ompatible with the a tually occuring range of 
elo ity ratio (in tead of the range perrnitted by tability con id ration) and the 

theorem i now nothing but the pecial ca e of the inequality : if the range degenerate 
to a ingle alue the upper and the lower bound coincide. 

The new formulation of the bound not only allow to e timate th deviation of the 
P-wave front from a phere for layer equence with a range of elo it ratio for th 
con tituent but al 0 allow to tabli h lirniting relation hip between the geometrie 
hape ofth P-wa e front and the SH-wa e front (for K-media thi iatriet relation­
hip). Such relation hip might be u ed in combining P-wave- and H-wave ob erva­

tion but it remain to be een wheth r thi approach lead to practical re ult . 
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